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The antiplane steady dynamic contact problem for a periodic system of punches in an elastic half-space, which is analogous to 
the plane problem which has been treated earlier [1], is studied. Considerable attention is paid to investigating the resonance 
phenomena which ari,,;e when harmonic loads act on the punches. © 1996 Elsevier Science Ltd. All fights reserved. 

1. The antiplane time-independent motion of a homogeneous isotropic elastic half-space (y ~> 0) is 
considered (the y axis assumed to be directed downwards) and a shear load Xz~(2~t) = flx)exp(-itot) 
(!1 is Lamr's  constant) is applied at the upper edge of the axis (y = 0). Motion of the half-space for 
which the displao~'ments of the points are parallel to the z axis is understood as an antiplane motion. 

The amplitude displacements of the points of the half-space are determined from the formula [2] 

w(to, x,y) = - 1  T f{~)T_, exp(i~x-yy)d~ (1.1) 

f(~) = ~ f(x)exp(-i~x)dx, T = (~2 _ iC2)~, ~¢ = ~__ 
_~ ].) 

Here, f(~) is the Fourier transform of the function f(x), x) is the propagation velocity of transverse 
waves in the elastic medium and, starting from the radiation conditions, it is assumed that T ~> 0 when 
I ~ I ~> ~ and T = .-i(r 2 - ~2)1/2 when I ~ I < r.  

We shall now a~ume that the load on the surface of the half-space is quasi-periodic, that is, we assume 
that 

~(x + 1) =f(x)exp(-itx) (1.2) 

where I is the length of a certain segment and (x is a real parameter, [ (x I ~< x. 
In this case, it can be shown that 

112 
f (~)=g(~)Y,  exp[-im(~l+tx)], g(~)= ~ f(x)exp(-i~x)dx (1.3) 

m -112 

The convergence of the series in (1.3) is to be understood in the sense of convergence in the space 
of generalized ~act ions  [3]. 

Substituting (1.3) into (1.1) and using the equality [3] 

Y. exp( iml~) = 2~ ( 27t ) 

(where 8(g) is the 6-function), we find that 

2 
w(tO, x, y) = -T  ~" gkY~l exp(-YkY+i~kx) 

k 

tPrikl. Mat. Mekh. Vol. 60, No. 1, pp. 140-150, 1996. 

(1.4) 
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136 V. M. Fomin 

~k = ( 2 k n - ~ ) / / ,  gk =g(~k), 'Yk =(~2 ,1(2)~2 

By assuming that the quasi-periodic load consists of concentrated loads, that is, f(x) = --8(x) when 
Ix I < l/2, we obtain from (1.4), wheny = 0, the so-called group function of the effect 

r ( a ,  to, x ) = Z Y  . l k 'Ykl exp(i~kx) (1.5) 

since, in this case, g(~) = 1. 
When )'k = 0, the group function of the effect becomes infinite. It is easily explained that this occurs 

at frequencies COg = [ 2k~ - a [ WI (k e Z, where Z is the set of real integers including zero). These fre- 
quencies correspond to the cut-off frequencies of a layer Ix I ~<//2 with the following boundary conditions 

w ( l / 2 , y ) = w ( - l l 2 , y ) e x p ( - i ~ ) ,  "¢u(l l2 ,y)='czx(- l /2 ,y)exp(- io  0 

Note that the quasi-periodic problem for a half-space (that is, when there is a quasi-periodic load 
on the surface) is equivalent to the problem for the half-layer Ix ] ~< l/2,y >- 0 with the above-mentioned 
boundary conditions. The phenomenon of infinitely large displacements can be explained by the fact 
that the energy from a source located on the surface can not progress within the half-layer since it is 
"cut-off" for waves which are travelling downwards. We shall call these frequencies the a-resonance 
frequencies for the half-space. 

We now consider the motion of the half-space in the case of a kinetic perturbation, that is, the motion 
caused by the movement of strip punches with a plane base, arranged on the boundary of the half-space, 
for displacements of the punches of  specified amplitude (Fig. 1). We shall henceforth refer to this 
problem as the kinematic problem. The punches are parallel to the z axis, their width is equal to 2a 
and the distance between their axes is equal to l. The punches are successively numbered from --~ to 
+00. The quasi-periodic problem is studied, in which the amplitude displacements of the punches are 
specified in the following manner 

w m = exp(-ima) (1.6) 

The contact stresses will then also possess the property of quasi-periodicity (1.2). It follows from this 
that it is sufficient to determine the contact stresses under one of the punches, under the "main" punch, 
for example, which has the number zero. On equating the displacements of the points of the boundary 
of the half-space under the main punch to the displacement of the punch, we obtain the integral equation 
of the problem 

i K(ot, to, x - s )p ( s )ds  = 1 (Ixl~ < a) (1.7) 
- - a  

Fig. 1. 
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Here,  p(s) are the contact stresses. 
We will first consider the case when the frequency of the motion of the punches is different from all 

the a-resonance for the half-space. Then, by representing )'k in the form 

7k =l{kl[1 - (K'/{k):]~ 

we obtain the asymptotic representation of ,~1 for large I k I 

7k l = 2--~t kl (1 + ~--~k) + r k, r,=O(Ik1-3 ) (1.8) 

From (1.5) and (1.8), we obtain 

K(O<,to, x)=!exp(-i xlr  k-I COS("~ kx) "1 - 

Kl(~,to, x)=2exp(_ilx ) y. rke×p(i~.~kx ) 1 
k~O ~/0  

(1.9) 

Using the well-known formula [4] 

1 ln[2(l - cos x)] = - ~ k -I cos(h)  
2 k=l 

we find that 

K(°~'to'x)=lexp(-i-~xlIIn'aT+i \ l )L Ixl 2g k=i~ k-2sin(~kx)] +K2(O~'to'x) 

{ E It)I} (1.10) 

It can be shower that K2(oq to, x) are doubly continuously differentiable functions of x in the range 
Ixl<~a(a <l). 

It follows from (1.10) that the kernel K(tx, to, x) is integrable with a square in the range I x l ~< a 
and, consequently, Eq. (1.7) is a Fredholm integral equation of the first kind and the term g-" exp 
(- i~/x)  In I x I- represents the so-called singular part of the kernel. 

It follows from the relation 
1 

lnlx-ylTj(y)[l-y2]-~dy=-vjTj(x) ( j=O, l ,2  .... ) 
- I  

(v0 = n In 2, vj = n/j whenj  > 0) that the eigenfunctions of the singular part of  the kernel are Chebyshev 
polynomials Ty(y). The solution of Eq. (1.7) will therefore be sought in the form 

p(s)= ~. pjTj 1-  (1.11) 
j = O  

Substituting (1.21) into (1.7), multiplying by Tn(x/a)[1 - (x/a)2] -1/2 and integrating with respect to x 
from -a  to +a,  we arrive at an infinite system of linear algebraic equations. 
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(1.12) 

where S,, is the Kronecker delta and J,(x) is a Bessel function. 
Using representation (l.lO), it can be shown that system (1.12) is quasi-regular and is solved by 

reduction. 
We wilI now assume that the values of w are close to an a-resonance frequency for the half-space 

ok (the subscript k is fixed). Then, yk may be as close to zero as desired and the kth term in (1.5) can 
take values as large as desired. On multiplying (1.7) by yk, we shah have 

v,p+EV*p=&, &=yk (1.13) 

V,p = - f exp(i@) 1 exp(-i&s)p(s)ds 
--u 

V,p=-+ j C yi’exp[ig,(x-s)]p(s)ds 
1 -_u m#k 

Note that Vi is a finite dimensional operator which maps the space L(-a, a) into the one-dimensional 
subspace spanned by the vector exp(iI&). 

We shall seek a solution of Eq. (1.13) in the following form 

The coefficients d, are determined from the orthogonahty condition 

7 h,,(YNl-(Yw21-~ exp(-i&y)dy = 0 (m > 0) 
--u 

It is easy to determine that d, = im-‘~m_l(&u). 
We substitute (1.14) into (1.13), multiply by h,(x) (n = 0, 1, 2, . . .) and integrate with respect to x 

from -a to +a. As a result, we shah have 

1 m=o 

5 q,W*~,,~,)=(L~,) 
m=o 

(f;,f2)= i fiWf;W~ 
- ‘1 

(n > 0) (1.15) 

Eliminating qo from (1.15), we arrive at the following system of linear algebraic equations for qm 

cm ’ 0) 

g B,,,q,,, = b,, (n = 1,2,...) (1.16) 
tll=l 

B 
nm 

=(“,h,,h,)_ E1(V2hm9h,)(V,h,9h,) 
2a21c2 +&l(V*&,h#J) 

b, =(l,h,)- 
W,~o)(V&l,~,) 

2a27c2 +El(V.~,~) 

It can be shown that 
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(V2hm, hn ) = 2a2n2 2~ 771 [(_i).-t J.-I  (~ja) - dnJo(~ka - ~ja)] x 
j*k 

x [ i m - I J m _ l ( ~ j a ) - d m J o ( ~ k a - ~ j a ) ] -  

- - [ ~ n l - d n J o ( ~ k a ) ] [ ~ m - I - d m J o ( ~ k a ) ]  

(1.17) 

It follows from (1.17) that system (1.16) is quasi-regular for any sufficiently small e (excluding 
e = 0 ) .  

2. We shall call tl~ose frequencies, at which the principal vector of the contact stresses under a punch 
becomes infinite, the ct = resonance frequencies of the quasi-periodic kinematic problem. It is obvious 
that the existence of such frequencies is associated with the occurrence of non-trivial solutions in the 
case of the equation 

i K (o~ ,o~ ,x - s )p ( s )ds=O (Ixl<~ a) (2.1) 

Substituting (1.5) into (2.1), we obtain 

E Pk'yklyk(X) =0 (Ixl~<a) (2.2) 
k 

q/k (X) = l -y2 exp(i~kx), Pk = i P(Y)~k (y)dy 
- -0  

We shall investigate the question of the occurrence of non-trivial solutions of (2.1) in L( -a ,  a) and 
assume that they belong to L(-a ,  l - a) and vanish almost everywhere in [a, l - a), that is, they satisfy 
the equalities 

I-a 
p(s)'~, (s)ds = 0 (n ~ Z)  (2.3) 

O 

where {{Pn(y)}7** is a basis of the Banach space C(a, l - a). 
Let {1In(x)}7** be a basis of the space C(-a,  a). Multiplying (2.2) by rl-n(x) and integrating from -a  

to a, we obtain 

Here  and below 

Substituting the expansion 

PkTkl(~qlk,l]n)=O (]]n (X) -- O, xe(a , l - -a] )  (2.4) 
k 

l - a  

= f 
- - t l  

p(y)  =Y.  p k ~ k ( x )  
k 

into (2.3), we shall have 

]L P~ (~k,{P.) = 0 ({p. (x) -= O, x ~ [ -a ,a) )  (2.5) 
k 

Introducing the notation xk = pk/~lk, ba` = (¥k, {Pn), ca, = (¥k, "q.), we write (2.4) and (2.5) in the 
following form 

Y~ Xk'tkb,, k = O, Y~ x~c,, k = 0 (n ~ Z)  (2.6) 
k k 

The functions {¥k (x)}7** form an orthonormal basis of the Hilbert space H = L2(-a ,  l - a)  and 
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{rlk (X)}7** and {gk (x)}~-** are bases o f  the spaces/-/1 = L2(---a, a)  and H = L2(-a ,  l - a), respectively. 
It  is obvious that  H = H1 • HE. It  m a y  be assumed without  any loss o f  generali ty that  {rl,, (x)}7~. is an 
or thonormal ized  basis in H1. 

We will now investigate the quest ion o f  the existence of  non-trivial solutions in the case o f  system 
(2.6) in 12 . 

We note that systems which are similar to (2.6) in a certain sense have been investigated previously in [5]. However, 
there are considerable differences between them: the systems considered in [5] refer to systems of the second kind, 
and (2.6) is of the first kind. Furthermore, the simplifying assumption that all ~/k # 0 was adopted, whereas a finite 
number of ~k vanish here in the case of the a-resonance frequencies. All of this has a considerable effect on the choice 
of methods of investigation. The results and, to a large extent, the methods used in [5] cannot be applied to (2.6). 

It  can be shown that  Yk satisfy the following conditions: 
1. each of  them is either a real or  a purely imaginary number  and all o f  the non-zero  real numbers  are 
o f  the same sign (positive); 
2. the number  of  Yk which are purely imaginary and equal to zero  is finite. 

Lemma.  If  

{Ykbmk }~=_~ ~ 12 (2.7) 

for  any m, then system (2.6) only has a trivial solution in lz. 

Proof. We introduce the operators G and G* using the formulae 

Gf=~. Y,~(f,w~)W/~, G*f=~. yk(f,u/k)Wk 
k k 

which are defined in a certain set Eo, which is dense everywhere in H and consists of the elementsf~ H for which 
the series Y-k I Yk (f, Yk) 12 converges. Condition (2.7) means that {Pro e Eo. 

Definition. A linear operator T, defined in a certain set Eo of Hilbert space belongs to class (S) if it follows from 
(Tf,,,f,,) ~ 0 that f~ ~ 0. 

Let us show that G e (S) in H2. L e t f e  Eo. Using the notation (f, Wk) = fk, we find 

( G f  , f )  = G I ( f )  + iG2 ( f )  

G l ( f ) = ~  Reyklfk 12, G 2 ( f ) = ~  lmyklfkl  2 
k k 

(2.8) 

We note that, in the sum which defines Gl(f) , a finite number of terms are identically equal to zero. We shall 
show that G10 e) is positive definite in//2.  Let us assume the opposite, that is, that a sequence of elements 
fn ~ /-/2(11 fn II = 1, n = 1, 2 . . . .  ) exists which are such that GI(f~) ~ 0. We will represent an dement  fn in 
the following form: fn = fn (°) + fn 0), f(o) ~ Ho (Ho is the linear hull of the elements ~v for which Reyp = 0 
andfn(1).l_fn(°)). Then, Gl(fn) = G10en (1) and Gl(fn 0)) I> ~11 (fn (1)) II, where y = min ~/k (for all k to which Reyk # 0 
corresponds). Hence IIf~ 1) II ~ 0 when n ~ .o, that is, IIf~ _ f  Co) II ~ 0. 

It follows from this that all of the Ill, (°) II (n = 1, 2 , . . .  ) are bounded by a single number. It follows from the 
finite dimensionality of rio that a converging subsequencefq (°) ~ f (o )  e Ho(q = nl, n2 . . . .  ) can be chosen from the 
sequence fn (°) (n = 1, 2 . . . .  ). Then, fq (q = nl, n2 . . . .  ) also tends to this limit. Since H2 is complete,/(0) e/-/2. 
Hence, f(o)e Ho tq//2. But H 0 tq//2 = {0}, since the shortest distance from any vector Yk = F lt2 exp(i~r) to H2 
is not less than the quantity 

s = L ! d x J  = ( l - 2 a )  ~ (2.9) 

A contradiction has been arrived at: one the one hand, IIf (°) II = 1 as the limit of Ilfq II and, on the other hand, 
f(0) = 0, and so Gl(f) > p > 0 in H 2. 

Let us now assume that (Gfm,fm) ~ 0 for a certain sequence of elements fro ~ H 2. It follows from (2.8) that G10rm) 
---> 0 and this is only possible for fro ---> 0. Hence G ~ (S) in H2. It can similarly be proved that G* e (S) in H 2. 

Using the operator G, system (2.6) can be written in the following form 
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(Gx,gm)=0,  (x ,nm)=0  (meZ) (2.10) 

Let system (2.10) have a non-zero solution x e Eo. It follows from the second equality of (2.10) thatx • /- /2 and, 
from the first equality, that Gx • H1. Hence (Gx, x) = 0, and it follows from the fact that G belongs to the class 
(S) thatx = 0. 

If, however, x • E~, then a sequence of elements Xk --+ X can be found in H 2 N Ec  since E o is everywhere dense 
in H. We shall write (2.10) as 

(x,G*q%)=0, (x, q m ) = 0  ( m e Z )  

It then follows from the fact that x / tends  tox  that l i m k ~ .  (x/, G*(Pra) = 0 for each m. Hence 

lim(Gxi,tPm)=O, (xk .qm)=0 (m¢Z) 
k ' - ) ~  

We now introduce the notation G ~  = (Gxk, Cp, n). It ma), be assumed without loss of generality that I G ~  I decrease 
monotonically for a fixed m. Then, the series Y-nn I Gk,n P--'> 0 when k --4 oo. 

Actually, for any e which may be as small as desired, it is possible to obtain an m0 such that 

~. (IGI,,12 +IGI_ml2 )<E/2 
m = tn 0 + 1 

On the other hand, a/Co can be found such that 

~. IGk,nl2<e/2 
/ t l = - -  Olll 

when k > k0 and, consequently, for such k 
n~)  -I 

Y~ IGkml2< Y. IGkml2+ ~. (IGlml'+lGl,-ml2)<e 
nt I t t  =--  m 0 I t l  = tlt{i + 1 

which also means that the above-mentioned series tends to zero. 
But 

and, using the Cauchy-Bunyakovskii inequality, we obtain 

21½F 2l ~ ,x m, j j 

When k --4.0, the lirst factor on the right-hand side of the inequality tends to II x II and the second tends to  (GXk, 
xk) ~ 0, and it follows from the fact that G belongs to class (S) that x = lim k.~ ® Xk = O. 

Hence the lemma is proved. 

Theorem. For  any to > 0, the integral  equa t ion  (2.1) only has a trivial solution in L ( - a ,  a).  

Proof.  We const ruct  a sequence  of  funct ions (p,,,(x)(m e Z) in HE as follows: 

cp,,,(x) = ~°  (X)~m(X ) 

~P°,(x)=exp[i2rcm(x-a)/b]/'x[b, b = l - 2 a  (a<~ x < . l - a )  

(2.11) 

;o,(x)=II x-a)/è m 
[ ( l - a - x ) / G ,  

( a ~  < x ~  < a +  e`,,) 

(a+e` m <~ x <~ l - a - e . m )  

( l - a - e r a  ~ x<~ l - a )  

(2.12) 

Here ,  am > 0 is a cer tain summab le  sequence  ( Y ~ m e ` m  < o o ) .  

For  example ,  it is possible to put  em = e0/(I m I + 1) 2. We note  that  I ~n(X) I -< 1 and 9°(x)  is an 
o r thonorma l i zed  sequence.  
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It can be shown that (2.11) is a basis which is quadratically close to an orthonormalized basis [6]. 
For this purpose, it is sufficient that the operator T, defined by the formulae 

Tto °, =to, , ,- to°,(m~Z) 

satisfies the following conditions [6]: 
(a) the operator T is a Hilbert-Schmidt operator; 
Co) the operator I + T is invertible (I is a unit operator in the space//2). 
It follows from (2.12) that 

I - a  1 I - a  2e,,, 
Iltom-to OII2= I Itom(X)-toO,(x) 1 2 d x ~ -  t I;m(X) -ll2dx~< 

. b . b 

Then 

2 IIrto°," 2 = x  "tom o 2 -tomll <~ ~ e,~ < oo 
m m 

This also means that T is a Hilbert--Schmidt operator [6]. 
In order to check the ~i condition we shall take a sequence of complex numbers z k (k E Z) such that 

Ek I z~ 12 ~ 1. An element t0(x) = EkZkto0k(X) of the space//2 has a norm which does not exceed unity. 
Then 

lira,-< E Iz~l llrto°ll=E Iz~l ll~ k - C l l  
k k 

Using the Cauchy-Bunyakovskii inequality, we find 

If the magnitude of em is chosen such that Y_~ em < b/2, it then turns out that II Z~ II < I and this also 
means that the inequality II T~ II < 1 is satisfied. It follows from this that the operator I + Tis invertible, 
that is, that the 8 condition is satisfied. Hence, the sequence tom(X) (m ~ Z) is a basis of the space/-/2. 

On integrating by parts, we find 

i I - a  
b,,,k = ~ ,,~ to,,,(y)exp(i~ky)dy (2.13) 

Using (2.11) and (2.12), we find 

21tn, b dmt 
b,,k = b~ k ,,k b.~-~_l~kem(2mnlb_~ ) 

d,, k = exp[-it~ m 2rrm / b + i~k (a + e,, )] - exp(i~ka) - 

- exp[i~k (l - a)] + exp[ie,, 27tn, / b + i~k (l - a - ~m )] 

It follows from this that 

(2.14) 

Since I d,,~ I ~< 4 and Tk = O(I k I), it follows from (2.14) that {~ ,~}~ '=  ~ e 12 for any m. Hence, the 
conditions of the lemma are satisfied and system (2.6) only has a trivial solution in 12. 

Since x, e 12, then x~ = o(I k I q;2) and we obtain from the equalityp, = xk~'/, and the asymptotic form 
7k - 2hi k Ill thatpk = o(I k Ilr2). It follows from this that the class of functions in which Eq. (2.1) only 
has a trivial solution contains L(-a ,  a). 

The theorem is proved. 
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It follows from the theorem that Eq. (1.7) has a unique solution in L(--a, a). Hence, the quasi-periodic 
kinematic problem does not have a-resonance frequencies, that is, there are no travelling waves in the 
half-space y ~ 0, which is fixed at the upper bound along the bands I x - / m  I ~< a (m ~ Z). 

The numerical investigation enables one to clarify the physical reason for the boundedness of the principal vector 
of the contact stresses for any ot and to. We shall compare the field of the directions of the power flux under the 
punch, averaged over a period of the flux, at the non- a-resonance value of the frequency to = 0.8 (Fig. 2) and at 
the a-resonance value of the frequency for the half-space to1 = 1.571 (Fig. 3). At the non-resonance value to, the 
power flux goes to infinity while, at the resonance value of the half-layer Ix I ~<//2, the power flux is "cut-off" and 
a balance between the input and output power fluxes under the punch is observed. In the example under 
consideration 0t = 0, l = 4 (to and I are dimensionless: to = to'a/u, l = l/a; to' and l" are the dimensional quantities). 

3. We will now consider the quasi-periodic contact problem when the displacements of the punches 
are not specified but the loads acting on them are given. The amplitude values of the loads are quasi- 
periodic, that is, Fro(00 = F0(o 0 exp( - imc  0 (m is the number of the punch and m ~ Z). 

We write down the differential equation of the motion of the main punch 

~t o = d2wo(t)  / dt 2 = Fo(tX)exp(-itot ) -  Ro(t ) (3.1) 

Here, ~ is the mass per unit length of the punch, Wo(t) is its displacement and Ro(t) is the resultant 
of the contact stresses. 

On looking for the steady motion, we arrive at the equality 

-~toto2Wo(C~, to) = Fo(a)- Ro(C~,to ) (3.2) 

where w 0 (tx, to) aaad R0(ot , to) are the amplitude values of Wo(t ) and Ro(t ). 
On equating the displacements of the punch to the displacements of points of the boundary of the 

half-space, we obtain the integral equation 

i K(ot,to, x - s)qo(OLto, s)ds - F° (~t)- R°(tx'to) (Ixl<~ a) (3.3) 
~t0to 2 

Here, q0(tx, to) are the contact stresses under the main punch. 
Comparing Eqs (1.7) and (3.3), we find 

Ro ( o~, co ) = Fo ( oO Po ( cx, to ) l [ Po ( o~, to ) - ~toto 2 ] (3.4) 

\ \  

II 

\ 

I I I 

' !i I 

, I ,  ~ . 7 . . ~ \  
I • ! - - X \  

, o ~ - - N  / I 

',i J! 
• X . ~ . - - - , " / I  

Fig. 2. Fig. 3. 
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f \ \ -  
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3.-..-- 

t 

Fig. 4. 

Here, P0(a, to) is the principal vector of the contact stresses under the punch in the kinematic contact 
problem. 

Hence, in spite of the fact that the quasi-periodic kinematic problem does not have a-resonances, 
the analogous contact problem can have them if P0(a, to) takes real positive values. 

The graphs of P0(a, to) against a Shown in Fig. 4 f o r / =  4 and to = 0.1 (curve 1), to = 0.4 (curve 2) 
and to = 0.7 (curve 3) (the solid line corresponds to Re P0(a, to) and the dashed line to Im P0(~ to)) 
show that values of a and to exist for which P0(ct, to) > 0. It can be shown that the domain of these 
values is determined by the inequality to ~< aJ I a I/1 

We shall now consider the general contact problem for a periodic system of punches when the presence 
in the load of any symmetry properties whatsoever is not assumed. The resultant of the contact stresses 
under the ruth punch is given by the formula [1] 

I !,~ I i Fo(a)Po(O~,o3)e-~"~da 
R,~(to)=~--~-_ Po(a, to)exp(-ima)doL=--~--~-~ P0(a,  to)_l.t0to2 (3.5) 

Hence, the problem of the existence of resonances in the case of the general contact problem reduces 
to the question of the existence of the integral in (3.5), which is understood in the senses of the principal 
Cauchy value. It does not exist if the denominator of the integrand in (3.5) has a pole of second or 
higher order in the range [-g, ~], that is, i f  ~l.oto 2 = Po(~ to) and OPo(a, to)l~a = O. 

We note that the integral operator (1.7) is analytic outside the circle I a I ~< ~ /~  in the complex plane 
of a and this means [7] that the function P0(a, to) is analytic with respect to tx in this domain. 
Consequently, (~/~, n) and OP0(a, to)/Oa depend continuously on a when to//~ < I a I ~< g. 

It is seen in Fig. 4 that, in the interval (to//~, n), the function P0(a, to) decreases monotonically as a 
increases. Furthermore, P0(a, to) is symmetrical about the axes a = k~(k e Z) and periodic with period 
2g. It follows from this that OP0(g, to)/Oa = 0. 

Hence, if ~to2 = P0(g, to) for to ~< ~ / l ,  then R,n(to) takes infinitely large values, that is, resonance 
sets in. As the frequency approaches the resonance value, the motion of the punch becomes antiperiodic, 
that is, the phases of the oscillations of two adjacent punches become opposite with a simultaneous 
increase in the amplitude of the oscillations. 

This research was carried out within the framework of the "Non-regularity" project which is funded 
by the State Committee for Science and Technology of the Ukraine. 
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