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THE STEADY ANTIPLANE DYNAMIC CONTACT

PROBLEM OF A PERIODIC STRUCTURE
FOR AN ELASTIC HALF-SPACEY

V. M. FOMIN
Odessa
(Received 9 March 1993)

The antiplane steady dynamic contact problem for a periodic system of punches in an elastic half-space, which is analogoué to
the plane problem which has been treated earlier [1], is studied. Considerable attention is paid to investigating the resonance
phenomena which arise when harmonic loads act on the punches. © 1996 Elsevier Science Ltd. All rights reserved.

1. The antiplane time-independent motion of a homogeneous isotropic elastic half-space (y = 0) is
considered (the y axis assumed to be directed downwards) and a shear load 1,,/(2)) = fix)exp(~iax)
(1 is Lamé’s constant) is applied at the upper edge of the axis (y = 0). Motion of the half-space for
which the displacements of the points are parallel to the z axis is understood as an antiplane motion.
The amplitude displacements of the points of the half-space are determined from the formula [2]

w(m,x,y>=—% T FEY explitx — ) (11)
f®= | fwexp-itnds, 1=E-x, k=2

Here, f(€) is the Fourier transform of the function f{(x), v is the propagation velocity of transverse
waves in the elastic medium and, starting from the radiation conditions, it is assumed that y = 0 when
&= xandy = —i(* - E) when | €| < x.

We shall now assume that the load on the surface of the half-space is quasi-periodic, that is, we assume
that

fix + 1) = f(x)exp(~ia) 1.2)

where [ is the length of a certain segment and « is a real parameter, | o | < &.
In this case, it can be shown that

112
FE)=g&)Y, expl-imEl+a)l, gE&)= [ fx)exp(—i&x)dx (1.3)

=12

The convergence of the series in (1.3) is to be understood in the sense of convergence in the space
of generalized functions [3].
Substituting (1.3) into (1.1) and using the equality [3]

3 expmit)=2E 3 a(é—k"T")
m k

(where §(E) is the d-function), we find that

2 -
w(w,x,y)= -7 % 8Yx' exp(=y,y + ik, x) (1.4)
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&-'k =2kn-a)/l, & =g(€k)’ Yi =(§% _KZ)%

By assuming that the quasi-periodic load consists of concentrated loads, that is, f(x) = —8(x) when
| x| < I/2, we obtain from (1.4), when y = 0, the so-called group function of the effect

(0,0, x) = %)l; Yi' exp(i€ex) (1.5)

since, in this case, g(€) = 1.

When v, = 0, the group function of the effect becomes infinite. It is easily explained that this occurs
at frequencies o, = | 2kn — o | v/l (k € Z, where Z is the set of real integers including zero). These fre-
quencies correspond to the cut-off frequencies of a layer | x | =< //2 with the following boundary conditions

w(l12,y)=w(=112,y)exp(=ia), T, (I/2,y)=1,(-I/2,y)exp(—ic)

Note that the quasi-periodic problem for a half-space (that is, when there is a quasi-periodic load
on the surface) is equivalent to the problem for the half-layer | x | < [/2,y = 0 with the above-mentioned
boundary conditions. The phenomenon of infinitely large displacements can be explained by the fact
that the energy from a source located on the surface can not progress within the half-layer since it is
“cut-off” for waves which are travelling downwards. We shall call these frequencies the o-resonance
frequencies for the half-space.

‘We now consider the motion of the half-space in the case of a kinetic perturbation, that is, the motion
caused by the movement of strip punches with a plane base, arranged on the boundary of the half-space,
for displacements of the punches of specified amplitude (Fig. 1). We shall henceforth refer to this
problem as the kinematic problem. The punches are parallel to the z axis, their width is equal to 22
and the distance between their axes is equal to I. The punches are successively numbered from —e to
+e0. The quasi-periodic problem is studied, in which the amplitude displacements of the punches are
specified in the following manner

W, = exp(—imo) (1.6)

The contact stresses will then also possess the property of quasi-periodicity (1.2). It follows from this
that it is sufficient to determine the contact stresses under one of the punches, under the “main” punch,
for example, which has the number zero. On equating the displacements of the points of the boundary
of the half-space under the main punch to the displacement of the punch, we obtain the integral equation

of the problem

‘f K(o,0,x—s)p(s)ds=1 (IxI< a) 1.7)

-d

Fig. 1.
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Here, p(s) are the contact stresses.
We will first consider the case when the frequency of the motion of the punches is different from all
the a-resonance for the half-space. Then, by representing vy, in the form

Yo SIEN = (k1 E,)*V?

we obtain the asymptotic representation of y;' for large | k |

vl = (1 +—°‘-)+ o ne=00k™) (1.8)

2mikl 2wk

From (1.5) and (1.8), we obtain

K(o,@,x)= ‘l‘exp(—igx) i k™! cos(z_nkx)+
T l k=1 l

AL i k-ZSin(zTnkx)]+ K (a,m,x) (1.9)

2R k=1

K (a,m,x)= 3exp(—z’gx) > exp(iz—nkx) L
l l k=0 l Yo

Using the well-known formula [4]

%ln[Z(l —cosx)]=-— i k! cos(kx)
k=1

we find that

1 Lo a o = 21
K(o,,x)=—exp| -i—x || In—+i— 2ginl £&
( ) 1t XP( ’lx)[nlxl ey Elk sm( ) kx)]+1(2(0t,w,x)

ol

1
] }+ Ky (o, @, x) (1.10)

K,(o,m,x)= %exp(—i%x)ln{lx!l}a

It can be shown that K;(a, w, x) are doubly continuously differentiable functions of x in the range
lx{<a(a<]).

It follows from (1.10) that the kernel K(o, o, x) is integrable with a square in the range | x |ls a
and, consequently, Eq. (1.7) is a Fredholm integral equation of the first kind and the term ™" exp
(—ioylx) In | x | ! represents the so-called “singular” part of the kernel.

It follows from the relation

1
J lx =y T, -y T Rdy=—v,Ty(x) (j=0,1,2,...)
-1

(vo = mIn 2, v; = n/j when j > 0) that the eigenfunctions of the singular part of the kernel are Chebyshev
polynomials Tj(y). The solution of Eq. (1.7) will therefore be sought in the form

p(s) = go p,T,(i-)[x -G)z]% .11

Substituting (1.11) into (1.7), multiplying by T,(x/a)[1 — (x/a)*] " and integrating with respect to x
from —a to +a, we arrive at an infinite system of linear algebraic equations.
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‘M

An]pj = 15,,0 (1.12)

j=0

Ay =288 E 1, (64) ) (ea)

where §,, is the Kronecker delta and J,(x) is a Bessel function.

Using representation (1.10), it can be shown that system (1.12) is quasi-regular and is solved by
reduction.

We will now assume that the values of o are close to an a-resonance frequency for the half-space
@ (the subscript k is fixed). Then, y, may be as close to zero as desired and the kth term in (1.5) can
take values as large as desired. On multiplying (1.7) by i, we shall have

Vip+eV,p=¢, €=, (1.13)

Vip= _%exp(iékx) [ exp(—i&;s)p(s)ds

—-d

Vp=-21 % v explitn(x - )Ip(s)ds

l —a m#k

Note that V' is a finite dimensional operator which maps the space L(—4, a) into the one-dimensional
subspace spanned by the vector exp(i&:x).

Wa chall caalr o cnlitinn Af Ba 1 12) in tha fallawinag farem
YYL dlidll DVWA a oviuuviL VUL ]—l‘i- \l-lJl 1 LIV IVIIUYWILLE 1ULIL

p(y) = }“_:’quhm(y)n—<y/a>21‘yz (1.14)

hO(y) = exP(’ﬁk)’)v hm(y) = Tm—l (y) - dm exp('éky) (m>0)

The coefficients d,, are determined from the orthogonality condition

‘f By = (¥ 1 a)? I exp(~i&,)dy=0 (m>0)

—a

It is easy to determine that d,, = " 'nJ,,_,(E«a).
We substitute (1.14) into (1.13), multiply by h,(x) (n = 0, 1, 2, . . .) and integrate with respect to x
from —a to +a. As a result, we shall have

2 oo
702NZCIO +€ 3 qn(Vahy, hy) =€l hy)

m=0

S du(Vahpoh)=(Lh,) (n>0) (115)

m=0

)= A0S (x0dx
Eliminating g, from (1.15), we arrive at the following system of linear algebraic equations for g,,
(m>0)

Bwdm =b, (n=12,.) (1.16)

n
1

iMs

8I(V2hm’hf))(VZhO’hn)
2a’n? +el(Vyhy, hy)
el(1, hy)(Vohy, h,)

2a’r? + el(Vohy, hy)

Bnm = (Vth’hn ) -

b, =(,h,)—

It can be shown that
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Vahp,hy) =201 T, Y5 [(=)"" T, (€ @) - d, o (B - & ja)] X
j#k
X[i" Ty (€ ;0) — dJo(Era - a)] - (1.17)
8,1 = d Sy (Bu@)[B -y — oy (§1)])

It follows from (1.17) that system (1.16) is quasi-regular for any sufficiently small € (excluding
e = 0).

2. We shall call those frequencies, at which the principal vector of the contact stresses under a punch
becomes infinite, the o. = resonance frequencies of the quasi-periodic kinematic problem. It is obvious

that the existenice of such frequencies is associated with the occurrence of non-trivial solutions in the
case of the equation

‘j! K(o,0,x—s)p(s)ds=0 (IxI< a) (2.1)

—-a

Substituting (1.5) into (2.1), we obtain

T pYi'wi(x0)=0 (xi<a) (2.2)
k

V() =1 exp(iEx),  pp= | pOIT()dy

We shall investigate the question of the occurrence of non-trivial solutions of (2.1) in L(—a, a) and

assume that they belong to L(—a, [ — a) and vanish almost everywhere in [, ] - a), that is, they satisfy
the equalities

{-a
| p(9)9,(s)ds=0 (neZ) (23)

where {¢,(¥)}~.. is a basis of the Banach space C(a, [ —a).
Let {n,(x)}~.. be a basis of the space C(—a, a). Multiplying (2.2) by n—,(x) and integrating from —a
to a, we obtain
S p¥E (Wen)=0 (n,(x)=0, xe(al-al) (24)
k
Here and below
I-a _
(fir )= | A f(x)dx

Substituting the expansion

p(y)= % PV (x)

into (2.3), we shall have
% Pe(¥i.90,)=0 (9,(x)=0, xe[-aa)) (2.5)

Introducing the notation x; = pi/Yks bk = (Wi @n)s €k = (Wi, M), We write (2.4) and (2.5) in the
following form

% X Yiby =0, % Xey =0 (ne2) (2.6)

The functions {y; (x)}~.. form an orthonormal basis of the Hilbert space H = Ly(—a, ! - a) and
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{nk (©)}=.. and {@; (x)}~.. are bases of the spaces H; = L,(—a, a) and H = L,(-a, | - a), respectively.
It is obvious that H = H; & H,. It may be assumed without any loss of generality that {n,, (x)}~.. is an
orthonormalized basis in H;.

We will now investigate the question of the existence of non-trivial solutions in the case of system

(2.6) in by.

We note that systems which are similar to (2.6) in a certain sense have been investigated previously in [5]. However,
there are considerable differences between them: the systems considered in [5] refer to systems of the second kind,
and (2.6) is of the first kind. Furthermore, the simplifying assumption that all y,# 0 was adopted, whereas a finite
number of y, vanish here in the case of the o-resonance frequencies. All of this has a considerable effect on the choice
of methods of investigation. The results and, to a large extent, the methods used in [5) cannot be applied to (2.6).

It can be shown that v, satisfy the following conditions:
1. each of them is either a real or a purely imaginary number and all of the non-zero real numbers are
of the same sign (positive);
2. the number of v, which are purely imaginary and equal to zero is finite.

Lemma. If
{kanlk }:=-e-= € 12 (2'7)
for any m, then system (2.6) only has a trivial solution in J,.

Proof. We introduce the operators G and G* using the formulae
Gf =§ VSV G F=3 v, (fwv,
k

which are defined in a certain set E;, which is dense everywhere in H and consists of the elements f e H for which
the series % | 1 (f, We) I* converges. Condition (2.7) means that @, € Eg.

Definition. A linear operator T, defined in a certain set E of Hilbert space belongs to class (S) if it follows from

(Tf,, f,) = O that £, — 0.
Let us show that G € (S) in H,. Let f € E. Using the notation (f, ) = f;, we find

(Gf.f)=G,(f)+iGy(f) 2.8)

G =X Reyilfil?. Gy(N)=3 Imy,lfil?
X P

We note that, in the sum which defines G(f), a finite number of terms are identically equal to zero. We shall
show that G,(f) is positive definite in H,. Let us assume the opposite, that is, that a sequence of elements
e B fll=1,n=1,2,...) exists which are such that G,(f,) — 0. We will represent an element f, in
the following form: f, = £, + £,, £ € Hy (H, is the linear hull of the elements v, for which Rey, = 0
and £,V L £,®). Then, Gy(f;) = G(f,\ and G,(f") = +i| (f,() |I, where y = min v, (for all k to which Rey, # 0
corresponds). Hence || f,,(l) | » Owhen n — , that is, || f, — f,,(o) = 0.

It follows from this that all of the |} f,,(o) lI(n=1,2,...) are bounded by a single number. It follows from the
finite dimensionality of H, that a converging subsequence fq(o) —-fO0¢ Hy(g = ny, n,, . . .) can be chosen from the
sequence of"(O) (n=1,2,...). Then, f, (g = ny, ny, . . .) also tends to this limit. Since H, is complete, f(o) € H,
Hence, /¥ € Hy N H,. But Hy N H, = {0}, since the shortest distance from any vector y, = I''? exp(i&.x) to H,
is not less than the quantity

l-a yz |
s=|: | de =(l—2a)/2 2.9)
ad
A contradiction has been arrived at: one the one hand, {| f © Il = 1 as the limit of || f, || and, on the other hand,
9 =g, and so Gy(f) > p > 0 in H,.
Let us now assume that (Gf,,., f,,) — 0 for a certain sequence of elements f,, € H,. It follows from (2.8) that G4(f,,)
—» 0 and this is only possible for f,, — 0. Hence G € (S) in H,. It can similarly be proved that G* € (S) in H,.
Using the operator G, system (2.6) can be written in the following form
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(Gx,0,)=0, (x,1,)=0 (me2Z) (2.10)

Let system (2.10) have a non-zero solution x € Eg. It follows from the second equality of (2.10) thatx € H, and,
from the first equality, that Gx € H;. Hence (G, x) = 0, and it follows from the fact that G belongs to the class
(S) thatx = 0.

If, however, x € E;, then a sequence of elements x; — x can be found in H, N Eg since E is everywhere dense
in H. We shall write (2.10) as

(x,G'9,)=0, (x,1,)=0 (meZ)

It then follows from the fact that x; tends to x that lim, _, .. (x;, G*9,,) = 0 for each m. Hence

Lllm (ka,(p,,,)=0. (.Xk,nm)=0 (meZ)
300

We now introduce the notation Gy,,, = (Gxy, @) It may be assumed without loss of generality that | Gy, | decrease
monotonically for a fixed m. Then, the series X, | G, | — 0 when k — oo,
Actually, for any € which may be as small as desired, it is possible to obtain an m; such that

oo

S (0GP HG, _,P)<el2

m=my+1

On the other hand, a k; can be found such that

my
S G, P<el2
m=—nyy
when k > kg and, consequently, for such k&
1 1 v 2 2
2 Ikal < Z IkaI + Z (IGlml +|Gl,—m| )<e

" m=—nyy m=my+1

which also means that the above-mentioned series tends to zero.
But

(Gxy,xy) =(ka 1 2 X Prm ) =3 XimGim
n

m

and, using the Cauchy-Bunyakovskii inequality, we obtain
/2 7!
Gy, xp I [z ka,,,lz] [z IGk",IZ]
m m

When k — oo, the first factor on the right-hand side of the inequality tends to || x || and the second tends to (Gxz,
x;) — 0, and it follows from the fact that G belongs to class (S) that x = lim; _, . x; = 0.
Hence the lemma is proved.

Theorem. For any @ > 0, the integral equation (2.1) only has a trivial solution in L(-g, a).

Proof. We construct a sequence of functions @,,(x)(m € Z) in H, as follows:
O (X) = @), (1)G,,(x) (211)
05, (x)=expli2nm(x —a)/ b)/\b, b=I-2a (a<x<I-a)

(x-a)le, (asx<a+eg,)
£, (x)=11 (a+e, sx<sl-a-¢,) (2.12)
(I-a-x)le, (-a-¢g,s<x<l-a)

Here, g,, > 0 is a certain summable sequence (X,,€,, < o).
For example, it is possible to put €, = y/(I m | + 1)>. We note that | {,(x) | < 1 and ¢J(x) is an
orthonormalized sequence.
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It can be shown that (2.11) is a basis which is quadratically close to an orthonormalized basis [6].
For this purpose, it is sufficient that the operator T, defined by the formulae

T(pgx =0, - (pg,(m €Z)

satisfies the following conditions [6]:
(a) the operator T is a Hilbert-Schmidt operator;
(b) the operator I + T is invertible (/ is a unit operator in the space H,).
It follows from (2.12) that

{-u
lig,, —gn I = chpm(x) wn,(x)lzdx<% 11,0 -17 de < 25n

a

Then

S T, =5 mpm—wmllz<— X e <o

m

This also means that T is a Hilbert-Schmidt operator [6].

In order to check the § condition we shall take a sequence of complex numbers z; (k € Z) such that
% | z 2 < 1. An element ox) = Ekzk(pk(x) of the space H; has a norm which does not exceed unity.
Then

ITQl< T 1z NTQYlI=F Iz, llg, — I
k k

Using the Cauchy-Bunyakovskii inequality, we find
b %1, A
HTell< [Z Izklz] [Z II(pk—(p‘ZHZ] s[.l; 3 gm}
k k m

If the magnitude of €, is chosen such that %, €,, < b/2, it then turns out that || Ty || < 1 and this also
means that the inequality [| T, || < 1 is satisfied. It follows from this that the operator I + Tis invertible,
that is, that the & condition i lS satisfied. Hence, the sequence ¢,,(x) (m € Z) is a basis of the space H,.

On integrating by parts, we find

& I @ () XP(Ey)dy (2.13)
k a

Using (2.11) and (2.12), we find

_27mm b d,,
" obg ™ b-lEE,2rm/b-E))
d,, = exp[—i€,, 2nm/ b+i€, (a+¢,)]—exp(i,a) -

~expli€, (I - a)] +explie,, 2rnm/ b+ i§ (I —a—¢,)]

It follows from this that

b = dp[ VBl @rm 1582 (2.14)

Since | d | < 4 and v, = O(| k |), it follows from (2.14) that {yb,4}% - _.. € I; for any m. Hence, the
conditions of the lemma are satlsﬁed and system (2.6) only has a trivial solution in /,.

Since x; € I, thenx;, = o(| k | /2y and we obtain from the equality p; = xy, and the asymptotic form
Ye ~ 2| k /I that p, = o(} k |¥2). It follows from this that the class of functions in which Eq. (2.1) only
has a trivial solution contains L(-a, a).

The theorem is proved.
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It follows from the theorem that Eq. (1.7) has a unique solution in L(—a, a). Hence, the quasi-periodic
kinematic problem does not have o-resonance frequencies, that is, there are no travelling waves in the
half-space y = 0, which is fixed at the upper bound along the bands |x —Im | < a (m € Z).

The numerical investigation enables one to clarify the physical reason for the boundedness of the principal vector
of the contact stresses for any o and ®. We shall compare the field of the directions of the power flux under the
punch, averaged over a period of the flux, at the non- a-resonance value of the frequency @ = 0.8 (Fig. 2) and at
the a-resonance value of the frequency for the half-space ©; = 1.571 (Fig. 3). At the non-resonance value o, the
power flux goes to infinity while, at the resonance value of the half-layer | x | < I/2, the power flux is “cut-off” and
a balance between the input and output power fluxes under the punch is observed. In the example under
consideration o = 0,/ = 4 (0 and / are dimensionless: © = w'a/v, ! = I'la; @ and I’ are the dimensional quantities).

3. We will now consider the quasi-periodic contact problem when the displacements of the punches
are not specified but the loads acting on them are given. The amplitude values of the loads are quasi-
periodic, that is, F,,,(a) = Fo(a) exp(—ima) (m is the number of the punch and m € Z).

We write down the differential equation of the motion of the main punch

o = dwy(r)/ di? = Fy(ct)exp(—iwt) — Ry(f) (3.1)
Here, py is the mass per unit length of the punch, wy(?) is its displacement and Ry(z) is the resultant

of the contact stresses.
On looking for the steady motion, we arrive at the equality

~po® W (0, 0) = Fy (o) — Ry(ct, ) (3.2
where wy (o, ®) and Ry(ol, @) are the amplitude values of wy(f) and Ry(t).

On equating the displacements of the punch to the displacements of points of the boundary of the
half-space, we obtain the integral equation

[ K(0.0,x - 5)gq(0,0,5)ds = L= Re0)
Cu -

(Ixi< a) (3.3)

Here, go(o, ) are the contact stresses under the main punch.
Comparing Eqs (1.7) and (3.3), we find

Ry (0, @) = Fy (00) Py (0, @) / [ By (01, ) = o@? ] (3.4)

~
\
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Here, Py(a., ) is the principal vector of the contact stresses under the punch in the kinematic contact
problem.

Hence, in spite of the fact that the quasi-periodic kinematic problem does not have a-resonances,
the analogous contact problem can have them if Pg(o, ®) takes real positive values.

The graphs of Py(c, o) against o shown in Fig. 4 for/ = 4 and o = 0.1 (curve 1), ® = 0.4 (curve 2)
and ® = 0.7 (curve 3) (the solid line corresponds to Re Py(a, @) and the dashed line to Im Py(o, o))
show that values of o and o exist for which Py(a, ®) > 0. It can be shown that the domain of these
values is determined by the inequality @ < v | a |/

We shall now consider the general contact problem for a periodic system of punches when the presence
in the load of any symmetry properties whatsoever is not assumed. The resultant of the contact stresses
under the mth punch is given by the formula [1]

1 = , 1 ® F(o)R(a,w)e ™
R, (®0)=— T Py(a, —imoyda = — 0
o (©) o _jn % (0L, @) exp(—imar)da. o _In P () o

do (3.5)

Hence, the problem of the existence of resonances in the case of the general contact problem reduces
to the question of the existence of the integral in (3.5), which is understood in the senses of the principal
Cauchy value. It does not exist if the denommator of the integrand in (3.5) has a pole of second or
higher order in the range [, 7], that is, if pow® = Py(a, ®) and aPy(c, @)/da; = 0.

We note that the integral operator (1. 7) is analytic outside the circle | o | < @i/ in the complex plane
of o and this means [7] that the function Py(o, ®) is analytic with respect to o in this domain.
Consequently, (w/v, t) and dPy(0.,, ®)/do. depend continuously on o when wlfv < |a| < m.

It is seen in Fig. 4 that, in the interval (w//v, &), the function Py(c, ®) decreases monotonically as o
increases. Furthermore, Py(0., ®) is symmetrical about the axes o = kn(k € Z) and periodic with period
2r. It follows from this that dPy(n, w)/do = 0.

Hence, if po@’ = Po(r, ©) for @ < vr/l, then R,,(0) takes mﬁmtely large values, that is, resonance
sets in. As the frequency approaches the resonance value, the motion of the punch becomes antiperiodic,
that is, the phases of the oscillations of two adjacent punches become opposite with a simultaneous
increase in the amplitude of the oscillations.

This research was carried out within the framework of the “Non-regularity” project which is funded
by the State Committee for Science and Technology of the Ukraine.
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